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A. Motivation B.

» Internal-information over-utilization. Prior research shows
that only parts of the texts are useful to the relation inference, and *
not all and always the visual sources play positive roles for MRE.
A fine-grained feature screening over both the internal image and
text features is needed. '

» External-information under-exploitation. Although com-
pensating the texts with visual sources, there can be still information ) '¢
deficiency in MRE, in particular when the visual features serve less
(or even negative) utility. More external semantic supplementary
information should be exploited for MRE. *

» Example #1
Input Text: Congratulations to Angela and Mark Salmons, a new life ahead is waiting!

couple

Method

As shown in Figure 2, our overall framework consists of five tiers:

Scene Graph Generation. The model takes as input an image [ and text I', as well as the
subject v, and object entity v,. We represent / and I’ with the corresponding visual scene
graph (VSG) and textual scene graph (TSG).

Cross-modal Graph Construction. The VSG and TSG are assembled as a cross-modal
graph (CMG), which is further modeled via a graph encoder.

GIB-guided Feature Refinement. We perform GIB-guided feature refinement (GENE)
over the CMG for internal-information screening, i.e., node filtering and edge adjusting, which
results in a structurally compact backbone graph.

Multimodal Topic Integration. The multimodal topic features induced from the latent
multimodal topic model (LAMO) are integrated into the previously obtained compressed
feature representation for external-information exploitation via an attention operation.

% Inference. The decoder predicts the relation label Y based on the enriched features.
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Figure 1 — Examples of multimodal relation extraction (MRE). The relational
pairs are marked in texts.

C. Main Results D.
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» Multimodal methods, by leveraging the additional visual features,
exhibit higher performances consistently. >
» Our model boosts the SoTA with a very significant margin.

» Information screening and exploiting both contribute to task >
performance improvements.

» The scene graph is beneficial for the structural modeling of the
multimodal inputs.
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Figure 2 — Overview of our proposed framework.

In-depth Analysis

RQ1: Does GENE helps by really denoising the input features?. A: Yes, cf. Figure 3.

RQ2: Are LAMO induced task-relevant topic features beneficial to the end task? A: Yes, cf.
Figure 5 & Figure 6.

RQ3: How do GENE and LAMO collaborate to solve the end task? A: cf. Figure 7.

RQ4: Under what circumstances do the internal-information screening and
external-information exploiting help? A: ct. Figure 4.
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Figure 7 — The entropy under various model settings.



